Microwave rectification by a carbon nanotube Schottky diode
نویسندگان
چکیده
منابع مشابه
Schottky barriers in carbon nanotube heterojunctions
Electronic properties of heterojunctions between metallic and semiconducting single-wall carbon nanotubes are investigated. Ineffective screening of the long-range Coulomb interaction in one-dimensional nanotube systems drastically modifies the charge transfer phenomena compared to conventional semiconductor heterostructures. The length of depletion region varies over a wide range sensitively d...
متن کاملRectification properties of carbon nanotube "Y-junctions".
Quantum conductivity of single-wall carbon nanotube Y-junctions is calculated. The current versus voltage characteristics of these junctions show asymmetry and rectification, in agreement with recent experimental results. Furthermore, rectification is found to be independent of the angle between the branches of these junctions, indicating this to be an intrinsic property of symmetric Y-junction...
متن کاملOptimization of Schottky barrier carbon nanotube field effect transistors
Carbon nanotube field-effect transistors (CNTFETs) have been studied in recent years as a potential alternative to CMOS devices, because of the capability of ballistic transport. CNTFETs can be fabricated with Ohmic or Schottky type contacts. We focus here on Schottky barrier CNTFETs which operate by modulating the transmission coefficient of carriers through the Schottky barriers at the interf...
متن کاملHigh-frequency capability of Schottky-barrier carbon nanotube FETs
The high-frequency capability of carbon nanotube field-effect transistors is investigated by simulating the small-signal performance of a device with negative-barrier Schottky contacts for the source and drain, and with a small, ungated region of nanotube between the end contacts and the edge of the wrap-around gate electrode. The overall structure is shown to exhibit resonant behaviour, which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2008
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.2939095